Strike, dip, and rake directions in focal mechanism
Vincent S. Cronin wrote A Primer on Focal Mechanism Solutions for Geologists (2010). My interest in his work is in his descriptions of fault vectors and angles. I need to use these standard names if I wish to write a paper on Focal Mechanism of Earthquakes.
Based on Cronin's diagram in p. 6, the reference strike, which we shall denote by $\mathbf e_{strike}$ appears to be the direction of the fault line as seen from a drone camera flying overhead high above the fault. The dip vector, which we shall denote by $\mathbf e_{dip}$, is a vector perpendicular to the reference strike $\mathbf e_{strike}$ and lies along the fault plane. The direction of $\mathbf e_{dip}$ is downward along the fault in Cronin. In this way, if we define the rake $\mathbf e_{rake}$ as the direction of the movement of the one side of the fault, then $\mathbf e_{rake}$ can be expressed as a rotation of $\mathbf e_{strike}$ about $\mathbf e_{dip}\times\mathbf e_{strike}$ by an angle $\theta_{rake}$, which is positive if the rotation is counterclockwise and negative if clockwise, following the right hand rule. These considerations results to the following expression for the rake direction $\mathbf e_{rake}$:
\begin{equation}
\mathbf e_{rake} = \mathbf e_{strike}\cos\theta_{rake} - \mathbf e_{dip}\sin\theta_{dip}.
\end{equation}
But even then, there is an uncertainty in the definition of the strike direction $\mathbf e_{strike},$ since $-\mathbf e_{strike}$ can also be the initial definition. Perhaps, the strike direction should be defined as that which makes an acute angle with respect to the north direction.
Based on Cronin's diagram in p. 6, the reference strike, which we shall denote by $\mathbf e_{strike}$ appears to be the direction of the fault line as seen from a drone camera flying overhead high above the fault. The dip vector, which we shall denote by $\mathbf e_{dip}$, is a vector perpendicular to the reference strike $\mathbf e_{strike}$ and lies along the fault plane. The direction of $\mathbf e_{dip}$ is downward along the fault in Cronin. In this way, if we define the rake $\mathbf e_{rake}$ as the direction of the movement of the one side of the fault, then $\mathbf e_{rake}$ can be expressed as a rotation of $\mathbf e_{strike}$ about $\mathbf e_{dip}\times\mathbf e_{strike}$ by an angle $\theta_{rake}$, which is positive if the rotation is counterclockwise and negative if clockwise, following the right hand rule. These considerations results to the following expression for the rake direction $\mathbf e_{rake}$:
\begin{equation}
\mathbf e_{rake} = \mathbf e_{strike}\cos\theta_{rake} - \mathbf e_{dip}\sin\theta_{dip}.
\end{equation}
But even then, there is an uncertainty in the definition of the strike direction $\mathbf e_{strike},$ since $-\mathbf e_{strike}$ can also be the initial definition. Perhaps, the strike direction should be defined as that which makes an acute angle with respect to the north direction.
Comments
Post a Comment